Title: | Nonparametric Sobol Estimator with Bootstrap Bandwidth |
---|---|
Description: | Algorithm to estimate the Sobol indices using a non-parametric fit of the regression curve. The bandwidth is estimated using bootstrap to reduce the finite-sample bias. The package is based on the paper Solís, M. (2018) <arXiv:1803.03333>. |
Authors: | Maikol Solís <[email protected]> |
Maintainer: | Maikol Solís <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.1.0 |
Built: | 2025-03-23 03:53:01 UTC |
Source: | https://github.com/maikol-solis/sobolnp |
sobolnp
Plot the Sobol indices based in a non-parametric regression with cross-validation and bootstrap bandwidth
plot(snp, ...) ## S3 method for class 'sobolnp' plot(snp, ...)
plot(snp, ...) ## S3 method for class 'sobolnp' plot(snp, ...)
snp |
an object of class |
... |
further arguments passed to the |
A formatted table with the results of the sobolnp
function.
ishigami.fun <- function(X) { A <- 7 B <- 0.1 sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1]) } X <- matrix(runif(3*100, -pi, pi), ncol = 3) Y <- ishigami.fun(X) estimation <- sobolnp(Y = Y, X = X, nboot = 5) plot(estimation)
ishigami.fun <- function(X) { A <- 7 B <- 0.1 sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1]) } X <- matrix(runif(3*100, -pi, pi), ncol = 3) Y <- ishigami.fun(X) estimation <- sobolnp(Y = Y, X = X, nboot = 5) plot(estimation)
sobolnp
Print method for objects sobolnp
print(snp, ...) ## S3 method for class 'sobolnp' print(snp, ...)
print(snp, ...) ## S3 method for class 'sobolnp' print(snp, ...)
snp |
an object of class |
... |
further arguments passed to the |
A formatted table with the results of the sobolnp
function.
ishigami.fun <- function(X) { A <- 7 B <- 0.1 sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1]) } X <- matrix(runif(3*100, -pi, pi), ncol = 3) Y <- ishigami.fun(X) estimation <- sobolnp(Y = Y, X = X, nboot = 5) print(estimation)
ishigami.fun <- function(X) { A <- 7 B <- 0.1 sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1]) } X <- matrix(runif(3*100, -pi, pi), ncol = 3) Y <- ishigami.fun(X) estimation <- sobolnp(Y = Y, X = X, nboot = 5) print(estimation)
Algorithm to estimate the Sobol indices using a non-parametric fit of the regression curve. The bandwidth is estimated using bootstrap to reduce the finite-sample bias.
sobolnp(Y, X, bandwidth = NULL, bandwidth.compute = TRUE, bootstrap = TRUE, nboot = 100, ckerorder = 2, mc.cores = 1)
sobolnp(Y, X, bandwidth = NULL, bandwidth.compute = TRUE, bootstrap = TRUE, nboot = 100, ckerorder = 2, mc.cores = 1)
Y |
Response continuous variable |
X |
Matrix of independent variables |
bandwidth |
If |
bandwidth.compute |
Logical value. Indicates if the bandwidth should be estimated or not. Defaults to |
bootstrap |
Logical value. Indicates if the estimation should be with bootstrap or not. Defaults to |
nboot |
Number of bootstrap samples taken for the method. Ignored if 'bootstrap = FALSE'. Defaults to |
ckerorder |
Numeric value specifying kernel order (should be one of
|
mc.cores |
Number of cores used. Defaults to |
A list of class sobolnp
with the following elements:
First order Sobol indices estimated with nonparametric regression and a cross-validation bandwidth
Bandwidth estimated with cross-validation
First order Sobol indices estimated with nonparametric regression and a bootstrap bandwidth
Bandwidth estimated with bootstrap
Solís, Maikol. "Nonparametric estimation of the first order Sobol indices with bootstrap bandwidth." arXiv preprint arXiv:1803.03333 (2018).
ishigami.fun <- function(X) { A <- 7 B <- 0.1 sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1]) } X <- matrix(runif(3*100, -pi, pi), ncol = 3) Y <- ishigami.fun(X) estimation <- sobolnp(Y = Y, X = X, nboot = 5)
ishigami.fun <- function(X) { A <- 7 B <- 0.1 sin(X[, 1]) + A * sin(X[, 2])^2 + B * X[, 3]^4 * sin(X[, 1]) } X <- matrix(runif(3*100, -pi, pi), ncol = 3) Y <- ishigami.fun(X) estimation <- sobolnp(Y = Y, X = X, nboot = 5)